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I. Introduction 
In the first paper of this series,2 it was shown 

that, in the limiting case of low concentrations, 
the osmotic deviations of dipole solutes were pro­
portional to concentration. The coefficient of 
proportionality was calculated in first approxima­
tion for solutions in which 

y = tf/XWDkT » 1 (1) 

where /u is the dipole moment of the solute mole­
cule, assumed to be an ellipsoid of rotation with 
axes a and b = Xa and where D is the dielectric 
constant of the solvent medium at the tempera­
ture T. This condition is fulfilled by solutions of 
many electrolytes in solvents of low dielectric 
constant, where the moments of the ion pairs3 

are of the order of 10-20 Debye units.* 
It is the purpose of this article to calculate the 

limiting law for the molecular polarization of a 
dilute dipole solution, using the same model and 
assumptions as in the previous paper. We make 
the further restrictions that the field strength 
used in measuring the dielectric constant is weak, 
and that the period of the impressed field is 
large compared to the time of relaxation of a di­
pole molecule,5 

The result is that the molecular polarization P 
for low concentration is given by 

P == P0(I - cG(y.\)) (2) 

where c is concentration, Po is the molecular 
polarization of the solute extrapolated to zero 
concentration and G is a function of the parame­
ters y and X. For the cases considered here, 
X < 2 _ 1 / l and P decreases with increasing concen­
tration. (For X = 2~l/\ the limiting tangent on a 
P — c plot is parallel to the axis of concentration 
and for X > 2_1 /a , P increases6 as c increases.) 

II. The Polarization Formula 
1. General Method.—In a solution contain­

ing dipole molecules, we expect to find a mutual 
(1) International Research Fellow. 
(2) Fuoss, T H I S JOURNAL, 56,1027 (1934); in later footnotes, desig­

nated as I. 
(3) Ref. 2, Footnotes 2 and 3. 
(4) Kraus and Hooper, Proc. Nat. Acad. Set., 19, 939 (1933). 
(5) Debye, "Polar Molecules," Chemical Catalog Co., New York, 

1929, Chaps. V, VI. 
(6) Debye ["Handbueh der Radiologic" ( M a n ) , Leipzig, 1925, 

p. 636 fi\] has calculated the molecular polarization for the case 
where X - I , *'. e., for spherical molecules. 

orientation of two given dipoles in each other's 
field, which will increase as the molecules come 
closer together. When we measure the polariza­
tion through the dielectric constant of the solution, 
the mutual orientation is superimposed on the 
orientation produced by the external field. 
Since the mean distance of separation of molecules 
depends on concentration, the mutual polariza­
tion will also be a function of concentration. 
In order to calculate the effect, we compute the 
net moment of a given pair of dipoles, multiply 
by the appropriate Boltzmann factors, and sum 
over all possible configurations of molecules 
present. This procedure avoids the assumption 
that associated molecules containing two dipoles 
are formed; for the case of y > > 1, however, 
the main contribution to the final result will 
arise from configurations in which two dipoles 
are in contact in their position of lowest potential 
energy, so that empirically we have the equivalent 
of an association to quadrupoles produced by 
electrostatic fields of the dipoles.7 

Let the solution contain N dipole molecules 
in a total volume V, and let the concentration 
in number of molecules per unit volume be 
n = NfV. We use the same device as before 
to calculate the interaction of the dipoles. Each 
molecule is surrounded by a sphere of radius R, 
so chosen that the potential energy of two mole­
cules is negligible compared to kT when r, their 
distance apart, is greater than R. This condi­
tion can be fulfilled because the potential energy 
of two dipoles is proportional to r~s, i. e., falls off 
rather rapidly with increasing distance of separa­
tion. Configurations in which two spheres of 
radius R intersect will be called a dipole pair; 
if the sphere around a given dipole does not inter­
sect another sphere, we shall consider the dipole 
free. Configurations in which three or more 
spheres intersect simultaneously can be made neg­
ligibly rare by choosing a sufficiently small concen­
tration. We then roughly specify the condition 
of the N molecules when we state that there are 
present Ni free dipoles and N2 dipole pairs, where 

N.= N1+ 2Ni (3) 
(7) The situation is similar to the description of certain properties 

of electrolytes by means of ion-pairs; cf. Ref. 1, footnotes 1 and 2. 
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Let dNt designate the number of dipole pairs 
satisfying the conditions that the distance apart 
of the constituent dipoles is in dr at r, (r < R), 
that the axis of the first dipole û' is in the (ele­
ment of) solid angle dQ.', that the axis of the 
second dipole /J," is in dQ", and that r lies in the 
solid angle dQ. Then by a slight generalization 
of a formula previously derived8 we have 

dNi ,e-u/kT rUrd&da' dQ' (4) 32T2K 

where u is the total potential energy of the dipole 
pair. Equation (4) will be the starting point for 
the calculation of the effect of dipole interaction 
on molecular polarization. 

,an" 

fl'V JS 

Fig. 1.—Definition of angles. 

2. Total Moment.—The total electrical mo­
ment of the solution9 due to orientation of per­
manent moments by the external field and by the 
fields of neighboring molecules is given by the sum 

SJVM = (N - 2 j (ZiV2) m + f 

= Nm + I (m2 — 2m) dN? 

(5a) 

(5) 

where m is the average moment of a single dipole 
and m2 that of a dipole pair. The first term on the 
right in (5a) represents the contributions due to 
free dipoles (i. e., those with no other molecule 
within a distance R) and the second term includes 
all configurations of dipole pairs, as is implied 
by the integral sign. 

(8) Fuoss, Physik. Z., 38, 59 (1934). 
(9) The molecules of the solvent medium are assumed to have no 

permanent dipole moments. 

As Debye10 has shown 
m = ^F/3kT (6) 

where F is the external field. The dipole pairs 
have components of moment parallel to the field 
given by 

mi = M cos #' + M cos i?' (7) 

if &' and #" are the angles the two single moments 
make with the external field. If we substitute 
(4) in (5), we obtain 
SAV = Nm + 

Ara 

f-Ie-U /kT (mi - 2m) dV da'dit" (8) 
3 2 T T 2 F 

The integral in (8) must now be evaluated. 
3. Integration over Field Angles.—In cal­

culating the integral in (8), it is necessary to 
average over all orientations of the dipole pairs 
with respect to the external field. It is indiffer­
ent, as far as the result is concerned, whether we 
keep the field direction fixed and allow r to take all 
orientations, or whether we keep r fixed and give 
the field F all orientations. The latter method is, 
however, much simpler when we use the angles 
defined in Fig. 1. The total energy u is made up 
of the mutual energy of the two dipoles in the 
pair, plus their potential energies in the external 
field 

U = Un + Uf 

uF = nF (cos tJ' + cos i?") 

Since the mutual energy is independent of d' and 
&", the integration over the angles in dV = r2dr 
sin 9 dQ dtp may be carried out quite simply. We 
write 

e-"/kT = e~um/kT e-uF/kT 

and expand the second factor in its power series. 
Since the field is assumed to be weak, we drop 
terms of order F2 and higher, leaving to evaluate 

J"jr ru 

sin 6 de I dtp (M(cos d' + cos tT) - 2m( 
o Jo 

1 + f= (cost?' + costf") 
Ki 

From the trigonometrical relationships on the unit 
sphere, we have 
cos «?' = cos 0 cos 9 ' + sin 0 sin G' cos p 
cos tJ* = cos 9 cos 9" + sin 9 sin B" cos <p" cos <p + 

sin 0 sin 9" sin <p" sin <p 

Substituting these equations and (6), and carrying 
out the integration, we obtain 

l(e,<c) =-jJf k° s e ' c o s e " + s i n e ' s i n e " cos ^1'' 

as the result of the integration over the field 
(10) Debye, "Polar Molecules," p. 29. 
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angles. Substitution in (8) gives for the total 
electric moment 

SiVM = ^ i j l + -£?_ j . . Ce-«m/kTrzdrdQ'dQ" l ] \ 

(9) 

If we divide the above equation by the total 
volume V, we obtain the electrical moment per 
unit volume, and this divided by the field strength 
F gives the polarization net per unit volume due 
to the presence of permanent dipoles in the solute 
molecules 

•ZNn/FV = na 
so that 

where / replaces the integral in (9). Differentiat­
ing with respect to concentration, we finally 
obtain 

After evaluation of the integral J and conversion 
to practical units (polarization in cc. and concen­
tration as mole fraction), (10) will give the 
limiting slope on a plot of molecular polariza­
tion of solute (usually written P2) against mole 
fraction. 

4. Asymptotic Expansion of the Integral.— 
As in the calculation of osmotic properties, 
we can show that the integral J becomes inde­
pendent of the upper limit R for r when we choose 
R >> a, where a represents the length of the 
major axis of the ellipsoidal molecule. We there­
fore write r = oo as the upper limit Further­
more, we are assuming that y > > 1, so that the 
principal value of the integral arises from values 
of the variables near r = h, 8 ' = T / 2 , G" = r/2, 
<p" = v, due to the peak of the exponential inte­
grand in the vicinity of this point. By the means 
of the approximate method illustrated in the 
treatment of the osmotic properties, we obtain 

Substituting this result in (10) gives 

d» V3/ DkTZkT fh K^> 
The molecular polarization P is defined by 

P = 4wNa/3 (13) 
where N is now Avogadro's number. For / , 
the mole fraction of solute, we have for low con­
centrations 

/ = n/(n + n0) « »/»o = (M/doN)n (14) 

where M0 is the number of solvent molecules per 
unit volume and M is the molecular weight and 
do the density of the solvent. Combining equa­
tions (12), (13) and (14), we obtain the final result 

d/l/.o 3'/« \3kTJ MDy1I^ (15) 

where y is defined in (1) and z is given by 

. - & -•)-"• 
According to (15), the molecular polarization is a 
linear function of the mole fraction at low concen­
trations. The coefficient of proportionality is 
determined by the electrical and geometrical 
properties of the model used to represent the solute 
molecules and by the constants describing the 
solvent medium. By differentiating (15) with 
respect to temperature, we may obtain in first 
approximation the temperature coefficient of the 
limiting slope on a P-f plot. 

The writer takes this opportunity to thank 
Professor P. Debye for many valuable suggestions 
regarding the treatment of this problem. 

Summary 

1. The dielectric properties of a dilute solu­
tion of dipole molecules are derived, using an 
ellipsoidal model to represent the solute particles. 

2. An explicit asymptotic expansion, valid 
for the case of large moments and solvents of low 
dielectric constant, is calculated in first approxi­
mation. This case corresponds to electrolytic 
solutions in such solvents. 
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